89 research outputs found

    A Computable Economist’s Perspective on Computational Complexity

    Get PDF
    A computable economist's view of the world of computational complexity theory is described. This means the model of computation underpinning theories of computational complexity plays a central role. The emergence of computational complexity theories from diverse traditions is emphasised. The unifications that emerged in the modern era was codified by means of the notions of efficiency of computations, non-deterministic computations, completeness, reducibility and verifiability - all three of the latter concepts had their origins on what may be called 'Post's Program of Research for Higher Recursion Theory'. Approximations, computations and constructions are also emphasised. The recent real model of computation as a basis for studying computational complexity in the domain of the reals is also presented and discussed, albeit critically. A brief sceptical section on algorithmic complexity theory is included in an appendix

    A Primer on the Tools and Concepts of Computable Economics

    Get PDF
    Computability theory came into being as a result of Hilbert's attempts to meet Brouwer's challenges, from an intuitionistc and constructive standpoint, to formalism as a foundation for mathematical practice. Viewed this way, constructive mathematics should be one vision of computability theory. However, there are fundamental differences between computability theory and constructive mathematics: the Church-Turing thesis is a disciplining criterion in the former and not in the latter; and classical logic - particularly, the law of the excluded middle - is not accepted in the latter but freely invoked in the former, especially in proving universal negative propositions. In Computable Economic an eclectic approach is adopted where the main criterion is numerical content for economic entities. In this sense both the computable and the constructive traditions are freely and indiscriminately invoked and utilised in the formalization of economic entities. Some of the mathematical methods and concepts of computable economics are surveyed in a pedagogical mode. The context is that of a digital economy embedded in an information society

    Remembering Clower

    Get PDF

    The foundations of computable general equilibrium theory

    Get PDF
    general equilibrium theory,CGE models,mathematical economics,computability,constructivity

    The Phillips Machine, The Analogue Computing Traditoin in Economics and Computability

    Get PDF
    In this paper I try to argue for the desirability of analog computation in economics from a variety of perspectives, using the example of the Phillips Machine. Ultimately, a case is made for the underpinning of both analog and digital computing theory in constructive mathematics. Some conceptual confusion in the meaning of analog computing and its non-reliance on the theory of numerical analysis is also discussed. Digital computing has its mathematical foundations in (classical) recursion theory and constructive mathematics. The implicit, working, assumption of those who practice the noble art of analog computing may well be that the mathematical foundations of their subject is as sound as the foundations of the real analysis. That, in turn, implies a reliance on the soundness of set theory plus the axiom of choice. This is, surely, seriously disturbing from a computation point of view. Therefore, in this paper, I seek to locate a foundation for analog computing in exhibiting some tentative dualities with results that are analogous to those that are standard in computability theory. The main question, from the point of view of economics, is whether the Phillips Machine, as an analog computer, has universal computing properties. The conjectured answer is in the negative.Phillips Machine, Analogue Computation, Digital Computation, Computability, General Purpose Analogue Computer

    Using and producing ideas in computable endogenous growth

    Get PDF
    It is shown that Paul Romer’s suggestion to model algorithmically the use and production of ideas in an endogenous growth model is formally feasible. Such a modelling exercise imparts a natural evolutionary flavour to growth models. However, it is also shown that the policy implications are formally indeterminate in a precise and effective sense.endogenous growth,algorithmic ideas,computable growth

    The Fundamental Theorems of Welfare Economics, DSGE and the Theory of Policy - Computable & Constructive Foundations

    Get PDF
    The genesis and the path towards what has come to be called the DSGE model is traced, from its origins in the Arrow-Debreu General Equilibrium model (ADGE), via Scarf's Computable General Equilibrium model (CGE) and its applied version as Applied Computable General Equilibrium model (ACGE), to its ostensible dynamization as a Recursive Competitive Equilibrium (RCE). It is shown that these transformations of the ADGE - including the fountainhead - are computably and constructively untenable. The policy implications of these (negative) results, via the Fundamental Theorems of Welfare Economics in particular, and against the backdrop of the mathematical theory of economic policy in general, are also discussed (again from computable and constructive points of view). Suggestions for going 'beyond DSGE' are, then, outlined on the basis of a framework that is underpinned - from the outset - by computability and constructivity considerationsComputable General Equilibrium, Dynamic Stochastic General Equilibrium, Computability, Constructivity, Fundamental Theorems of Welfare Economics, Theory of Policy, Coupled Nonlinear Dynamic

    Freedom, Anarchy and Conformism in Academic Research

    Get PDF
    In this paper I attempt to make a case for promoting the courage of rebels within the citadels of orthodoxy in academic research environments. Wicksell in Macroeconomics, Brouwer in the Foundations of Mathematics, Turing in Computability Theory, Sraffa in the Theories of Value and Distribution are, in my own fields of research, paradigmatic examples of rebels, adventurers and non-conformists of the highest caliber in scientific research within University environments. In what sense, and how, can such rebels, adventurers and non-conformists be fostered in the current University research environment dominated by the cult of 'picking winners'? This is the motivational question lying behind the historical outlines of the work of Brouwer, Hilbert, Bishop, Veronese, Gödel, Turing and Sraffa that I describe in this paper. The debate between freedom in research and teaching, and the naked imposition of 'correct' thinking, on potential dissenters of the mind, is of serious concern in this age of austerity of material facilities. It is a debate that has occupied some of the finest minds working at the deepest levels of foundational issues in mathematics, metamathematics and economic theory. By making some of the issues explicit, I hope it is possible to encourage dissenters to remain courageous in the face of current dogmasNon-conformist research, economic theory, mathematical economics, 'Hilbert's Dogma', Hilbert's Program, computability theory
    • 

    corecore